Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
BMC Med Res Methodol ; 23(1): 46, 2023 02 17.
Article in English | MEDLINE | ID: covidwho-2281390

ABSTRACT

BACKGROUND: Multi-institution electronic health records (EHR) are a rich source of real world data (RWD) for generating real world evidence (RWE) regarding the utilization, benefits and harms of medical interventions. They provide access to clinical data from large pooled patient populations in addition to laboratory measurements unavailable in insurance claims-based data. However, secondary use of these data for research requires specialized knowledge and careful evaluation of data quality and completeness. We discuss data quality assessments undertaken during the conduct of prep-to-research, focusing on the investigation of treatment safety and effectiveness. METHODS: Using the National COVID Cohort Collaborative (N3C) enclave, we defined a patient population using criteria typical in non-interventional inpatient drug effectiveness studies. We present the challenges encountered when constructing this dataset, beginning with an examination of data quality across data partners. We then discuss the methods and best practices used to operationalize several important study elements: exposure to treatment, baseline health comorbidities, and key outcomes of interest. RESULTS: We share our experiences and lessons learned when working with heterogeneous EHR data from over 65 healthcare institutions and 4 common data models. We discuss six key areas of data variability and quality. (1) The specific EHR data elements captured from a site can vary depending on source data model and practice. (2) Data missingness remains a significant issue. (3) Drug exposures can be recorded at different levels and may not contain route of administration or dosage information. (4) Reconstruction of continuous drug exposure intervals may not always be possible. (5) EHR discontinuity is a major concern for capturing history of prior treatment and comorbidities. Lastly, (6) access to EHR data alone limits the potential outcomes which can be used in studies. CONCLUSIONS: The creation of large scale centralized multi-site EHR databases such as N3C enables a wide range of research aimed at better understanding treatments and health impacts of many conditions including COVID-19. As with all observational research, it is important that research teams engage with appropriate domain experts to understand the data in order to define research questions that are both clinically important and feasible to address using these real world data.


Subject(s)
COVID-19 , Humans , Data Accuracy , COVID-19 Drug Treatment , Data Collection
2.
J Clin Oncol ; 40(13): 1414-1427, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1883563

ABSTRACT

PURPOSE: To provide real-world evidence on risks and outcomes of breakthrough COVID-19 infections in vaccinated patients with cancer using the largest national cohort of COVID-19 cases and controls. METHODS: We used the National COVID Cohort Collaborative (N3C) to identify breakthrough infections between December 1, 2020, and May 31, 2021. We included patients partially or fully vaccinated with mRNA COVID-19 vaccines with no prior SARS-CoV-2 infection record. Risks for breakthrough infection and severe outcomes were analyzed using logistic regression. RESULTS: A total of 6,860 breakthrough cases were identified within the N3C-vaccinated population, among whom 1,460 (21.3%) were patients with cancer. Solid tumors and hematologic malignancies had significantly higher risks for breakthrough infection (odds ratios [ORs] = 1.12, 95% CI, 1.01 to 1.23 and 4.64, 95% CI, 3.98 to 5.38) and severe outcomes (ORs = 1.33, 95% CI, 1.09 to 1.62 and 1.45, 95% CI, 1.08 to 1.95) compared with noncancer patients, adjusting for age, sex, race/ethnicity, smoking status, vaccine type, and vaccination date. Compared with solid tumors, hematologic malignancies were at increased risk for breakthrough infections (adjusted OR ranged from 2.07 for lymphoma to 7.25 for lymphoid leukemia). Breakthrough risk was reduced after the second vaccine dose for all cancers (OR = 0.04; 95% CI, 0.04 to 0.05), and for Moderna's mRNA-1273 compared with Pfizer's BNT162b2 vaccine (OR = 0.66; 95% CI, 0.62 to 0.70), particularly in patients with multiple myeloma (OR = 0.35; 95% CI, 0.15 to 0.72). Medications with major immunosuppressive effects and bone marrow transplantation were strongly associated with breakthrough risk among the vaccinated population. CONCLUSION: Real-world evidence shows that patients with cancer, especially hematologic malignancies, are at higher risk for developing breakthrough infections and severe outcomes. Patients with vaccination were at markedly decreased risk for breakthrough infections. Further work is needed to assess boosters and new SARS-CoV-2 variants.


Subject(s)
COVID-19 , Hematologic Neoplasms , BNT162 Vaccine , COVID-19/complications , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Hematologic Neoplasms/complications , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/therapy , Humans , SARS-CoV-2
3.
J Clin Oncol ; 39(35): 3997-3998, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1581947
4.
J Clin Oncol ; 39(20): 2232-2246, 2021 07 10.
Article in English | MEDLINE | ID: covidwho-1484813

ABSTRACT

PURPOSE: Variation in risk of adverse clinical outcomes in patients with cancer and COVID-19 has been reported from relatively small cohorts. The NCATS' National COVID Cohort Collaborative (N3C) is a centralized data resource representing the largest multicenter cohort of COVID-19 cases and controls nationwide. We aimed to construct and characterize the cancer cohort within N3C and identify risk factors for all-cause mortality from COVID-19. METHODS: We used 4,382,085 patients from 50 US medical centers to construct a cohort of patients with cancer. We restricted analyses to adults ≥ 18 years old with a COVID-19-positive or COVID-19-negative diagnosis between January 1, 2020, and March 25, 2021. We followed N3C selection of an index encounter per patient for analyses. All analyses were performed in the N3C Data Enclave Palantir platform. RESULTS: A total of 398,579 adult patients with cancer were identified from the N3C cohort; 63,413 (15.9%) were COVID-19-positive. Most common represented cancers were skin (13.8%), breast (13.7%), prostate (10.6%), hematologic (10.5%), and GI cancers (10%). COVID-19 positivity was significantly associated with increased risk of all-cause mortality (hazard ratio, 1.20; 95% CI, 1.15 to 1.24). Among COVID-19-positive patients, age ≥ 65 years, male gender, Southern or Western US residence, an adjusted Charlson Comorbidity Index score ≥ 4, hematologic malignancy, multitumor sites, and recent cytotoxic therapy were associated with increased risk of all-cause mortality. Patients who received recent immunotherapies or targeted therapies did not have higher risk of overall mortality. CONCLUSION: Using N3C, we assembled the largest nationally representative cohort of patients with cancer and COVID-19 to date. We identified demographic and clinical factors associated with increased all-cause mortality in patients with cancer. Full characterization of the cohort will provide further insights into the effects of COVID-19 on cancer outcomes and the ability to continue specific cancer treatments.


Subject(s)
COVID-19/therapy , Neoplasms/mortality , Adolescent , Adult , Aged , COVID-19/diagnosis , COVID-19/mortality , Case-Control Studies , Cause of Death , Electronic Health Records , Female , Humans , Male , Middle Aged , Neoplasms/diagnosis , Neoplasms/therapy , Prognosis , Registries , Risk Assessment , Risk Factors , Time Factors , United States , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL